Using stability classes F and G in the development of Emergency Response Scenario Plans

RISK 2016: Friday 20<sup>th</sup> May **Presenter: Patrick Walker Position: Senior Risk Engineer** 









![](_page_1_Picture_0.jpeg)

- Emergency Response Scenario Plan
  - Overview
  - Extent of Effects
- Consequence Modelling
  - Overview
  - Inputs
- Atmospheric Stability Class / Weather Conditions
  - Overview
  - Selection
- Modelling Atmospheric Stability Class
  - Vapour Dispersion
  - Dispersion Coefficients
  - Example

![](_page_1_Picture_14.jpeg)

# Emergency Response Scenario Plan: Overview

![](_page_2_Figure_1.jpeg)

- Information necessary to manage a major incident
- Details concerning the major incident:
  - Description
  - Process isolation
  - Response equipment on-site
  - Required additional resources
  - Extent of effects (on-site & off-site).
- Training tool used to test systems against the requirements of the emergency event
- Used in consultations with emergency services

![](_page_2_Picture_11.jpeg)

# Emergency Response Scenario Plan: Extent of Effects

![](_page_3_Figure_1.jpeg)

Potential on-site & off-site effects

![](_page_3_Picture_3.jpeg)

#### Consequence Modelling: Overview

- Consequence modelling is used to determine the extent of the impact (*effects*) of a major incident
- Consequence modelling software packages (e.g. <u>DNV-GL</u> <u>PHAST</u>) are used to evaluate the impact of:
  - Radiant heat from fires
  - Overpressure from explosions
  - Harmful concentrations from toxic releases
- Various consequence types rely on gas dispersion modelling (e.g. flammable vapour clouds, toxic impacts)

![](_page_4_Picture_7.jpeg)

#### Consequence Modelling: Inputs

- Specify major incident details:
  - Material, temperature, pressure
  - Hole size
  - Release location, orientation, height
- Specify impact criteria (effect) of interest
  - E.g. Onset of fatality for toxic releases
- Specify weather conditions for local area
  - Wind speed
  - Temperature
  - Stability class

![](_page_5_Picture_11.jpeg)

#### Atmospheric Stability Class: Overview

- Atmospheric stability class describes the turbulence generated by natural forces in the atmosphere
  - Vertical mixing caused by air particle movement
- General states of atmospheric stability:
  - Stable Calm evening
  - Neutral Overcast / windy evening
  - Unstable Sunny day
- Main influencing parameters:
  - Solar insolation
  - Cloud cover
  - Wind speed
  - Temperature gradient

![](_page_6_Picture_12.jpeg)

![](_page_7_Picture_0.jpeg)

 Classification schemes estimate an appropriate stability class based on local knowledge of influencing parameters

| Wind Speed,<br>m/s | Solar Insolation |          |        | Night Time                          |                    |
|--------------------|------------------|----------|--------|-------------------------------------|--------------------|
|                    | Strong           | Moderate | Slight | Thin Overcast or<br>>1/2 low clouds | <3/8<br>cloudiness |
| <2                 | А                | A-B      | В      | -                                   | -                  |
| 2-3                | A-B              | В        | С      | Е                                   | F                  |
| 3-4                | В                | B-C      | С      | D                                   | Е                  |
| 4-6                | С                | C-D      | D      | D                                   | D                  |
| >6                 | С                | D        | D      | D                                   | D                  |

Pasquill, F., "The estimation of the dispersion of windborne material", The Meteorological Magazine, Vol. 90, No. 1,063, Feb. 1961.

Very low wind speed (<2 m/s) - lack of quantitative knowledge</li>

![](_page_7_Picture_5.jpeg)

![](_page_8_Picture_0.jpeg)

#### Side View of a Dispersing Vapour Cloud

![](_page_8_Figure_2.jpeg)

Distance Downwind (m)

![](_page_8_Picture_4.jpeg)

![](_page_9_Picture_0.jpeg)

#### Stable Categories of E & F

- In dispersion modelling, stable conditions are used to represent "worst-case" impacts
- Stability class E classified by:
  - Slightly stable conditions
  - Night-time, low wind speeds (2-4 m/s)
  - Temperature inversion
- Stability class F classified by:
  - Moderately stable conditions
  - Night-time, low to very low wind speeds (<3 m/s)
  - Moderate temperature inversion
- Terrain characteristics (surface roughness) are also influential

![](_page_9_Picture_12.jpeg)

![](_page_10_Picture_0.jpeg)

#### Atmospheric Stability Class: Selection

#### Most Stable Category G

- Extremely stable
- Occurrence in specific situations / environments:
  - Arid rural areas
  - Clear night with ground frost / heavy dew
  - Over water
- Stability class G classified by:
  - Night-time
  - Cloudless
  - Strong temperature inversion
  - Very low wind speed (<2 m/s)
  - Flat terrain

![](_page_10_Picture_14.jpeg)

#### Example of Stability Class G: Nevada Nuclear Test Site

![](_page_11_Picture_1.jpeg)

![](_page_11_Picture_2.jpeg)

## Atmospheric Stability Class: Selection

- Stability classes A-F selected from well-established classifications
  - Applicable to different situations
- Basis for selecting stability class G is less clear:
  - Typically not adopted in classifications
- Use of stability class G requires consideration as to whether the very specific atmospheric conditions are actually possible for the location
- Stability class F is preferred in low wind speed, night time conditions

![](_page_12_Picture_7.jpeg)

# Atmospheric Stability Class: Example

- Small liquid release from chlorine drum (920 kg)
- Toxic vapour dispersion modelling of effects to a specific toxic impact criteria
- Examine night-time wind speed / stability class categories:
  - 1.5/F ; 1.5/G
  - 1.0/F ; 1.0/G

![](_page_13_Picture_6.jpeg)

# Atmospheric Stability Class: Example

![](_page_14_Figure_1.jpeg)

![](_page_15_Picture_0.jpeg)

# Atmospheric Stability Class: Example

 Demonstrates that the inappropriate selection of stability class leads to larger impact zones

 Significant implications for Emergency Response Scenario Plans

![](_page_15_Picture_4.jpeg)

![](_page_16_Picture_0.jpeg)

![](_page_16_Picture_1.jpeg)

"...all models are wrong, some are useful..."

- George E. P. Box

![](_page_16_Picture_4.jpeg)

#### Modelling Atmospheric Stability Class: Vapour Dispersion

![](_page_17_Figure_1.jpeg)

Vertical ( $\sigma_z$ ) spread

![](_page_18_Picture_0.jpeg)

- Stability classes are represented in the dispersion models using Gaussian dispersion coefficients
- Dispersion coefficients describe the horizontal ( $\sigma_y$ ) and vertical ( $\sigma_z$ ) spread of the cloud in the "passive" dispersion phase
- Dispersion coefficients are derived from experimental results and theory

![](_page_18_Picture_4.jpeg)

#### Modelling Atmospheric Stability Class: Dispersion Coefficients

![](_page_19_Figure_1.jpeg)

McMullen, R., "The Change of Concentration Standard Deviations with Distance", APCA NOTE-BOOK, Vol. 25, No. 10, Oct. 1975.

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_0.jpeg)

- Correlations for stability classes A-F obtained from experimental observations and theory
- For stability class G, no dispersion coefficients / experimental data available to derive correlations
- Correlations derived by extrapolating from the dispersion coefficients for stability classes A-F
  - Assumes less dispersion for G than F
- Actual dispersion characteristics ill-defined
  - Irregular, meandering, no definable travel

![](_page_20_Picture_7.jpeg)

# Modelling Atmospheric Stability Class: Example

- Large liquid release from Ethylene Isotainer
- Vapour dispersion modelling to determine the extent of the potential flammable effects
- Stable atmospheric categories:
  - 2.0/E
  - 1.5/F ; 1.5/G
  - 1.0/F ; 1.0/G

![](_page_21_Picture_7.jpeg)

# Modelling Atmospheric Stability Class: Example

![](_page_22_Figure_1.jpeg)

## Modelling Atmospheric Stability Class: Example

![](_page_23_Figure_1.jpeg)

24

![](_page_24_Picture_0.jpeg)

- Conclusion
- Gas dispersion modelling is critical component of Emergency Response Scenario Plans (e.g. toxic releases)
  - Quantification of off-site impact
- Stable conditions used to quantify "worst-case" extents
  - However, inappropriate use of the extremely stable stability class G leads to overstated impact distances
- Stability class F is preferred:
  - Stable conditions most appropriate for sites examined
  - Dispersion correlations based on experiment results, rather than an assumed extrapolation

![](_page_24_Picture_9.jpeg)

# Thank you

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

#### R4Risk

Level 14, 222 Kings Way (PO Box 5023) South Melbourne VIC 3205 P: 03 9268 9700 F: 03 8678 0650 E: solutions@r4risk.com.au www.r4risk.com.au