

ProSafe 2012

Quantitative Risk Assessment Linking in to Process Safety Management

Lachlan Dreher
Principal Consultant

Outline

- What is a QRA?
- What is a QRA good for?
- Issues conducting QRAs
- What can it tell us
- Using the results

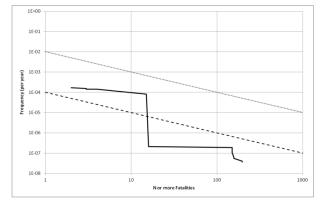
What is a QRA?

- QRA Quantitative Risk Assessment
- Method for quantifying risk
- Assessment of the risk associated with potential hazardous events
- With suitable criteria, it can enables an assessment to be made of risk tolerability

What is it used for?

- Evaluates risk from hazardous facilities/activities to public and employees
 - Land-use planning around hazardous facilities
 - Assessment of risk exposure to on-site personnel
- Determination of risk tolerability against a numeric criteria
- Comparison of different process designs or operational modes

How is it done?


- Typical risk assessment approach used
 - Hazard Identification
 - Frequency Assessment
 - Consequence Assessment
 - Risk Assessment

QRA Outputs

- Individual risk contours
 - Injury
 - Fatality
- Societal risk graphs
- Numeric indices
 - PLL: Potential loss of life
 - IRPA: Individual risk per annum

What is it good for?

- Converting "fuzzy" risk concepts into numbers & diagrams that can be more readily understood
- Provides a cumulative estimate of risk from multiple sources
- Developing improved understanding of scenarios, causes and outcomes

What is it good for?

- Identification of high-impact events
- Identification of high-risk events
- Identification of factors contributing to high-risk events
- Input into risk-based improvement plans

What is it good for?

- Comparison of alternative process design or operational modes
 - Alternate process technologies
 - Assessment of site locations
 - Alternate storage arrangements
 - Alternate transport activities
 - Alternate locations of on-site buildings
 - Alternate combinations of risk controls

Issues Conducting QRAs

Time & Cost

- It can be a very large time-consuming exercise
- Is a QRA truly needed?
- Will an alternate (simpler) analysis achieve the same outcome?

Issues Conducting QRAs

Definition of Scope

- Key aspect specification of desired outcomes
- The desired outputs from the model need to be clearly specified upfront
- The model can then be developed with these in mind
- Later updates / amendments can then be less time-consuming and costly

Issues with QRAs

- Suitability of input data
 - Site-specific data
 - Issues with frequency data
 - Consideration of operational issues
 - Consideration of human error

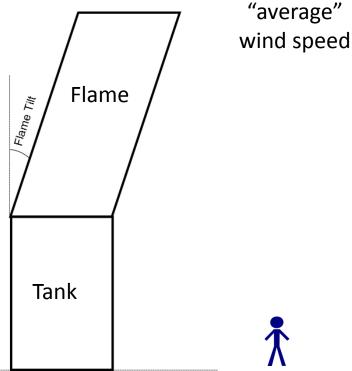
Issues with QRAs

- Variability of assumptions used
 - QRA model can be heavily dependent on assumptions
 - Different assumptions may give different results
 - Assumptions can be difficult to prove / disprove
 - Effect of multiple layers of conservative assumptions

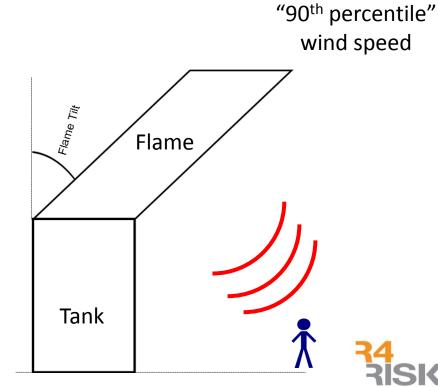
Issues with QRAs

- Too much focus on the final number
 - Ticking a box for compliance
 - QRA results are presented as numbers & graphs
 - Often taken to be much more "accurate" than they truly are
 - Lack of understanding of the meaning of the results

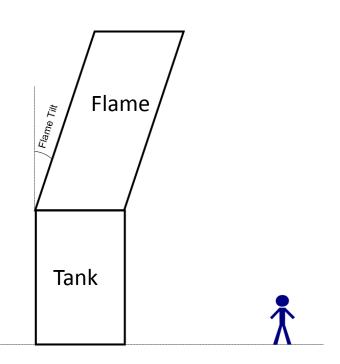
What can it tell us?

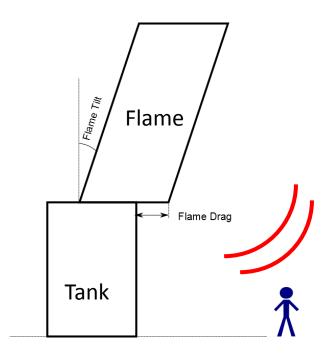

- Identification of major risk contributors
 - Determine from a review of the analytical results
 - Identify the key risk control measures
 - Incorporate management of key risk control measures into the SMS
 - Identify additional risk control measures
 - Rerun analysis to assess effects of additional risk reduction measures

What can it tell us?


- A QRA can generate large amounts of consequence modelling results
- These may be used for emergency response planning
- Are the QRA results suitable for this purpose?
 - Appropriate assumptions?
 - A QRA is a probabilistic analysis

Fire Modelling – Wind Speed




"average"

Fire Modelling – Flame Drag

Non-Process QRA

- Comparison of alternate drilling exploration program
 - Model developed to estimate "Potential Loss of Life"
 - Activities considered included:
 - Drilling
 - Air travel (helicopters & fixed wing)
 - Driving (Light vehicles)
 - Wildlife
 - Environmental factors (extreme heat & cold)

Non-Process QRA

- Benefits of additional safety standards were considered
 - Estimates of potential effectiveness of additional controls were made for each activity
 - Estimates were made for:
 - "Engineering" controls only
 - "Engineering" and "administrative" controls
 - Through this, the relative magnitude of the potential risk reduction could be estimated, allowing efforts to be prioritised

74 71SK

Keys for a Successful QRA

- Specification of Outputs
- QRA model must be designed with the required outputs in mind
- Validation of assumptions avoid excess conservatism
- Understand the outputs and implications of the study

Keys for a Successful QRA

- Practical use of the outputs
 - Understanding of major hazards
 - Understanding of the risk profile
 - Identification of key risk controls
 - Management of key risk controls (through the SMS)
 - Identification and evaluation of risk reduction options

In Closing...

All modelling is wrong, It's just that some modelling is useful.

R4Risk Pty Ltd

Technically Superior Risk Management

For more information, please contact:

R4Risk Pty Ltd

T 03 9528 3670 E lachlan.dreher@r4risk.com.au

